前列腺癌是美國癌症比例第二高的癌症,然而,前列腺癌細胞內發生的基因變異卻尚未被完全了解。直到近年次世代定序技術的蓬勃發展,科學家才得以解序癌細胞內的全基因體序列,進而深入探討前列腺癌細胞的癌化機制。

        Michael F. Berger等人在2011年二月發表在知名期刊natureThe genomic complexity of primary human prostate cancer”,其研究團隊以次世代定序平台GA2x解序七位罹患初期前列腺癌病患的癌細胞全基因體序列,研究發現前列腺癌細胞基因體有非常複雜的重組現象,如下圖,例如染色體21內,原本只會出現在紅色區域內的DNA序列卻出現在橘色區域中,而橘色區域的DNA片段也有轉移到紅色區域的情形,除此之外,不同染色體上的DNA片段也有相互交換的情形,例如正常細胞中僅會出現在第21對染色體之橘色區域的DNA序列,在癌細胞中出現在第1對染色體的黃色區域內。另外,下圖也顯示了在正常前列腺細胞內的基因體結構並沒有DNA片段位置轉移的現象。這些結果顯示前列腺癌細胞的基因體內,有著非常高頻率且複雜的重組現象(genomic rearrangements),並且這些重組現象與癌化過程有很大的相關性。
新圖片 (7).png 

YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

癌症在台灣是死亡原因第一位,對於癌症的治療,臨床上仍然無法有效的根除,因此,許多科學家皆積極的參與癌症相關的研究,希望能找出有效的治療方法。了解細胞的致癌機轉,揭開癌細胞全基因體序列,進而了解癌細胞的基因結構是相當重要的。早期以Sanger定序全基因體序列需耗費相當龐大的人力及花費,因此難以對於癌細胞的全基因體定序,直到近幾年,次世代定序技術的成熟,各種癌症的全基因體序列才得以被定序完成,下圖為近年來被完整定序的癌症種類。

新圖片 (5).png 

藉由比較癌細胞與正常體細胞的全基因體序列,可了解癌細胞在全基因體上的變異,進而協助科學家找出致癌的機轉及抑制癌細胞的治療方法,下圖為次世代定序配合生物資訊分析找出癌細胞上基因體變異的情形,其中包含point mutation、insertion and deletion(INDEL)、copy number alterations及translocation,另外,如果有部分片段定序出來的序列與資料庫中病毒或病原菌的序列相同,則可辨別細胞被外來微生物感染之病毒或細菌之種類。

YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

致病性微生物的來源管控及監測對於預防群體感染是相當重要的,傳統上須藉由比較微生物基因體結構上的相似度來找尋感染的源頭,常見的分子檢測方式為PFGE。Optical mapping能在短時間內得到微生物的全基因體限制酶切位圖譜, 因此,在比較不同來源微生物的基因體結構上,能得到比PFGE更精確且詳盡的資訊。目前Optical mapping在管控致病性微生物上,對於找尋醫院內部集體感染抗藥性金黃色葡萄球菌(Methicillin Resistant Staphylococcus aureus, MRSA)的傳播來源及細菌抗藥基因和毒性基因的分析,皆能提供即時且精確的資訊。

抗藥性金黃色葡萄球菌是醫院院內感染最常見的菌種,免疫力較差的住院患者常一旦被感染後,容易因為敗血症而導致死亡,因此,抗藥性金黃色葡萄球菌在醫院內的感染管控是相當重要的。下圖為以optical mapping找尋感染來源的實際案例,以不同病房內所採集到的抗藥性金黃色葡萄球菌之限制酶切位圖譜,與被感染的患者身上收集到的細菌之切位圖譜做相似度的比較,能準確的找出病人被感染之來源病房,並且得以針對特定病房做消毒及管控,進而達到防止集體感染之目的。

新圖片 (2).png   

YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

相較於傳統的microarray方法,RNA sequencing究竟有著什麼樣的優點,讓我們必須讓我們從microarray轉換到RNA sequencing呢?


RNA seq 不需預先知道genome sequence,但Microarray 需預先知道genome sequence才能進行。因此,即便是尚未完全解序完成的物種,RNA seq仍能偵測其RNA的表現量。

YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

(一)Illumina (Genome Analyzer)Sanger sequencing在定序前製作library過程中,是有極大差異的,最明顯的差異莫過於否需經過細菌進行質體複製。

前者(Illumina System就是指NGS)在製作library完全不需經過細菌進行質體複製就能直接進行定序,以減少錯誤發生率(如圖一)

新圖片.png  

而後者Sanger sequencing則是在製作過程中一定需經過細菌進行質體複製才能進行定序(如圖二)

YourGene 發表在 痞客邦 PIXNET 留言(3) 人氣()

NGS是目前最新且高通量的定序方法,所謂的NGS是指傳統定序法的改良版,而傳統定序法可以分成兩種來說明之。

 

第一種:Chemical Sequencing

 

YourGene 發表在 痞客邦 PIXNET 留言(7) 人氣()

Metagenomics這十年來才發展出來的新學門,主要是透過研究分析環境基因體,進而來描繪環境的代謝特性。

一個完整的環境系統,是由許多種生物組成,這些生物種類包羅萬象,除了肉眼可見的動植物外,還有肉眼看不見的微生物族群,這個族群數量遠比動植物多,包含真核微生物(Eukaryotic microbes)、細菌(Bacteria)、古生菌(Archaea)以及病毒(Virus),然而,百分之99以上的微生物是無法培養的,欲描繪一個真實環境的生化代謝圖譜,最有效的方式就是直接萃取環境中的DNA或RNA加以分析,藉由這些基因體資訊,來對環境有一個全盤性的了解。環境基因體具有高多樣性以及高複雜度,最有名的例子是,Craig Venter從一桶海水中萃取細菌DNA,經過基因體分析後,發現含有150,000,000bp非重複性的鹼基對、1,800個genotype以及1,200,000個過去沒有被記錄過的基因,因此,要描繪出真實的完整的環境基因體特性,需要大量的資料量 (Venter et al., 2004)。為了研究高度複雜的環境基因體,近期發展出兩個學門Metagenomics與Metatranscriptomics;Metagenomics是在DNA的層級,來分析環境基因體;而Metatranscriptomics是以RNA的層級來分析,可以補強Metagenomics不足的部分,除了可以分析各種基因的表現量,還能夠偵測環境中的RNA病毒族群。

早期Metagenomics與Metatranscriptomics實驗流程中,必須將環境的基因體DNA或cDNA轉植到E. coli體內,再進行定序分析,其過程繁瑣而冗長,而且得到的資訊量相對有限 (Trings et al., 2005);現在metagenomics研究,可以跳過繁瑣的分子生物學實驗技術,只需要將環境中的DNA或cDNA,直接進行次代定序(next generation sequencing)。 隨著定序技術的發展,定序資料的輸出量也越來越高,也就能夠呈現基因體真實的樣貌,至2010年,一次NGS定序所能夠得到的資料量已經達到100Gb的等級,因此,面對高度複雜的環境基因體的研究,NGS是最有效率的工具。

新圖片 (2).png  

YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

距今十萬年前,尼安德塔人的足跡曾遍及歐洲, 亞洲西部以及西伯利亞,而約在三萬年前,尼安德塔人族群卻忽然消失殆盡,他們為何消失? 他們與現代人是否血緣關係? 這些謎團一直是人類學家們所好奇的問題。

Svante Paabo團隊從三個尼安德塔人的骨骼中萃取DNA (圖一),利用NGS系統將其基因體進行定序,獲得超過4Gb序列資料,將其序列資料與現代人進行分析比較後發現,亞洲, 歐洲以及巴布亞新幾內亞的現代人有百分1-4%的DNA來自於尼安德塔人,而非洲裔的現代人則沒有此現象;12個非非裔(non-Africans)現代人特有的序列中,就有10個是來自尼安德塔人,這暗示著非非裔(non-Africans)的現代人祖先與尼安德塔人有雜交的現象;然而這樣的結果,與1997年Svante Paabo團隊的分析結果相左,主要是因為當時並沒有進行全基因體的比對,單單比對粒線體上的DNA,而粒線體DNA只占人類基因體的極小部分,因此,無法呈現全貌,沒有證據顯示現代人與尼安德塔人的關係;如今,定序技術的進步,使的尼安德塔人的序列得以被完整解開,進而證實非非裔的現代人皆有尼安德塔人的血統存在,這樣的結果已經改寫了人類的演化史。

新圖片.png  

圖一 三個尼安德塔人的骨骼,是Svante Paabo團隊取樣DNA的來源。

YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

在進行 de novo sequencing 時,假如我們只利用NGS的資料要將全基因體序列組裝起來,通常要非常高的覆蓋率 (coverage) 才可能將基因體組裝起來,但是,如此高的覆蓋率,不但定序費用相當高,而且面對龐大的資料量,組裝所需的硬體需求將是我們所面臨的第一個難題,組裝所需的漫長運算時間,則是另一個難題,此外,組裝錯誤亦無法被查覺。

利用 Optical mapping 可以更有效率地進行 de novo sequencing ,以更低的成本,更快的速度組完全基因體序列。

首先,我們利用 Optical mapping 建立全基因體的圖譜。


YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

一般在做全基因體比較時,通常會先得到全基體的序列,然後再比較基因體之間的差異。

但是,當我們還不知道這些基因體是否存在差異前,貿然進行全基因體定序,倘若結果未能如我們預期,定序所花費大量的人力、物力與金錢無異是種浪費。

在定序前,我們可以先以 Optical mapping 來分析我們要比較的基因體:

  • 如果基因體間沒有差異,我們就可以節省時間與金錢,不必再做進一步的定序。
  • 如果基因體間存在差異,再進行定序的工作,如此不但工作較有效果,而且Optical mapping 的結果亦可輔助全基因定序的工作,提升全基因體定序的效率。


YourGene 發表在 痞客邦 PIXNET 留言(1) 人氣()

菌株分型(strain typing)是分析菌株差異性常用的方法。

過去常用的方法是 PFGE (Pulsed Field Gel Electrophoresis),但是PFGE的缺點是

  1. 只提供少量的資訊
  2. 對於相近菌種的區別性不佳

使用 optical mapping 的話,即便是相近的菌株,我們仍能有效地加以區分,另外,除了分型之外,我們還能利用全基因體的比較而得知不同菌株間 insertion、deletion與基因轉置等等現象。

下圖即為 optical mapping 分析 strain typing 的結果,圖中兩菌株間的線條所標示之處即為菌株間相異之處。

YourGene 發表在 痞客邦 PIXNET 留言(0) 人氣()

找更多相關文章與討論

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

請輸入暱稱 ( 最多顯示 6 個中文字元 )

請輸入標題 ( 最多顯示 9 個中文字元 )

請輸入內容 ( 最多 140 個中文字元 )

請輸入左方認證碼:

看不懂,換張圖

請輸入驗證碼